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Abstract

Propositional Dynamic Epistemic Logic (DEL)
provides an expressive framework for epistemic
planning, but lacks desirable features that are stan-
dard in first-order planning languages (such as
problem-independent action representations via ac-
tion schemas). A recent epistemic planning for-
malism based on First-Order Dynamic Epistemic
Logic (FODEL) combines the strengths of DEL
(higher-order epistemics) with those of first-order
languages (lifted representation), yielding benefits
in terms of expressiveness and representational suc-
cinctness. This paper studies the plan existence
problem for FODEL planning, showing that while
the problem is generally undecidable, the cases
of single-agent planning and multi-agent planning
with non-modal preconditions are decidable.

1 Introduction
The development of autonomous agents is a key goal of arti-
ficial intelligence. A salient feature of autonomous agents is
their ability to exhibit goal-directed behaviour, i.e., to commit
to goals and generate plans to achieve them. In a multi-agent
setting, agents often need to create their own plans taking into
account, not only their own capabilities and knowledge, but
also their knowledge about other agents. Epistemic planning
[Baral et al., 2017] focuses on domains where such form of
reasoning is key. For example, in an epistemic planning prob-
lem, agent amay have the following goal: “a knows the truth-
value of ϕ, while b does not know that a knows this”. To
achieve this goal, agent a will typically need to reason about
what it can do to learn ϕ, but also about what b may do or
learn about ϕ from a’s actions.

In automated planning, standard formalisms such as the
Planning Domain Definition Language (PDDL) model do-
mains using first-order logic. A notable advantage of first-
order over propositional languages is that variables can
be used to define domain dynamics compactly. E.g., in
the PDDL description of BlocksWorld, the action schema
stack(x, y) uses variables x and y to represent the precon-
ditions and effects of all actions of the form: “put block x on
top of block y”. By lifting the representation to the level of

variables, schemas yield action representations whose size is
independent of the number of objects in a domain.

Formalisms such as PDDL can describe how actions
change the physical state of the environment, but rarely model
the mental states of agents or knowledge dynamics. Auto-
mated planning has therefore recently seen an influx of work
on epistemic planning based on Dynamic Epistemic Logic
(DEL). DEL offers a highly expressive basis for planning,
allowing e.g. nondeterminism, partial observability and arbi-
trary levels of higher-order reasoning. For an overview, see
e.g. [Bolander, 2017]. However, the DEL language is propo-
sitional, and this has drawbacks. For instance, DEL cannot
provide problem-independent action definitions via schemas.

Recently, Achen, Occhipinti Liberman and Rendsvig
[2020] introduced an epistemic planning formalism based on
First-Order Dynamic Epistemic Logic (FODEL). FODEL in-
tegrates the higher-order expressivity of DEL with the first-
order abstraction level of languages such as PDDL. It is based
on term-modal logic: first-order modal logics where the oper-
ators double as predicates by taking first-order terms as sub-
scripts, with e.g. ∃xKxP (x) a well-formed formula. This al-
lows agents and epistemic formulas in action schemas. While
this yields advantages in terms of expressiveness and repre-
sentational succinctness, the decidability and complexity as-
pects of FODEL have not been explored. This paper stud-
ies the decidability of the plan existence problem for FODEL
planning.

For DEL, the problem is undecidable in general [Bolander
and Andersen, 2011], entailing that the unrestricted FODEL
problem is undecidable as well, since FODEL planning ex-
tends DEL planning. However, decidable and reasonably ex-
pressive fragments of DEL planning have been found, such
as single-agent planning and multi-agent planning with non-
modal preconditions. The main results of this paper show that
the corresponding FODEL fragments are also decidable.

Before reaching the main results, Section 2 presents the
FODEL framework: its syntax, semantics, action schemas
and updates, and planning notions, while Section 3 intro-
duces first-order bisimulations for term-modal models. The
notion and accompanying results are essential to the study of
FODEL planning: As for DEL planning [Bolander and An-
dersen, 2011; Yu et al., 2013], the decidability proofs of Sec-
tion 4 rely crucially on constraining the state space, to ensure
that only finitely many states must be visited to check for a
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plan. In the decidable DEL cases, this is achieved by show-
ing that the infinite state space to be searched is finitely repre-
sentable up to bisimulation. Hence, the notion of bisimulation
is pivotal to such proofs. Introducing FODEL bisimulations
and developing the accompanying model-theoretic results al-
lows us to apply similar arguments to FODEL planning and
ultimately establish decidability for single-agent planning as
well as multi-agent planning with non-modal preconditions.

2 First-Order Dynamic Epistemic Logic
Throughout, we adopt the epistemic planning framework
developed in detail in [Achen et al., 2020]. Additional
FODEL examples may be found in [Occhipinti Liberman and
Rendsvig, 2019]. For an introduction to epistemic planning
with DEL, see e.g. [Bolander, 2017].

2.1 Language
Term-modal logical languages are parameterized by a signa-
ture specifying the non-logical symbols and their type—i.e.,
the constants and relation symbols, and the sort of arguments
(agents or objects) they apply to. For the purposes of repre-
senting epistemic planning, we limit attention to function-free
signatures with finitely many predicate and constant symbols.
This restriction is not assumed in [Achen et al., 2020].

Definition 1. A signature is a tuple Σ = (V, C, R, t) where
V := Vagt ∪ Vobj is a set of agent and object variables, with
Vagt and Vobj both countably infinite, C a finite set of constant
symbols and R a finite set of predicate symbols. The terms
of Σ are T := V ∪ C. Finally, t is a type assignment that
satisfies (i) for x ∈ T, t(x) ∈ {agt, obj} with t(x) = i for
all x ∈ Vi, i ∈ {agt, obj}, and (ii) for r ∈ R with arity n,
t(r) ⊆ {agt, obj}n. We denote by ti(r) the i-th component
of t(r) and by ar(r) the arity of r.

Definition 2. Let Σ be a signature. The language L(Σ) is
given by the grammar:

ϕ := r(t1, ..., tn) | ¬ϕ | ϕ ∧ ϕ | Ktϕ | ∀xϕ

where t1, . . . , tn ∈ T, r ∈ R, (t(t1), ..., t(tn)) ∈ t(r), t ∈ T
with t(t) = agt, and x ∈ V. An atom is a formula of the
form r(t1, ..., tn); it is ground if it contains no variables and
free if it only contains variables. GroundAtoms(L(Σ)) and
FreeAtoms(L(Σ)) denote the set of ground and free atoms of
L(Σ). A sentence is a formula without free variables. L0(Σ)
is the Kt-free sublanguage.

Throughout, the standard Boolean connectives as well as
>,⊥ and ∃ are used as meta-linguistic abbreviations as usual.
Ktϕ is read as “agent t knows that ϕ”.

2.2 Epistemic Models
In epistemic logic-based planning frameworks, states are rep-
resented using variants of Kripke models [Kripke, 1962]. We
use constant domain Kripke models (the same domain in each
world) with non-rigid constants (names, like predicates and
relations, may change extension between worlds, allowing
for uncertainty about agent identity). Models where agents’
accessibility relations are equivalence relations are standard
in epistemic planning, and here called epistemic models. A

w1 w2

ann bob evakey

a1 a2 a3o1

seesowns

ann bob evakey

a1 a2 a3o1

sees
a2, a3

Figure 1: An epistemic state s0 = (M,w1) for
L({x?, x1, x2, . . . }, {ann, bob, eva, key}, {owns, sees}, t).
Types are t(c) = agt for c ∈ {ann, bob, eva}, t(key) = obj,
t(owns) = (agt, obj) and t(sees) = (agt, agt). The state has
worlds WM = {w1, w2}, domain DM = {a1, a2, a3, o1}
and accessibility relations Ra1 = {(w1, w1), (w2, w2)},
Ra2 = Ra3 = W × W (reflexive world-edges are not drawn).
The interpretation function is depicted like so: squiggly lines link
constants to entities, and predicate-labelled arrows relate entities
for predicates (e.g., (a1, o1) ∈ IM (owns, w1)). In the actual world
w1, ann owns the key. bob and eva do not know this (they cannot
distinguish w1 and w2). Everyone knows that bob can see ann.

model with a designated world is a state; Figure 1 depicts an
epistemic state, formally defined below.

Definition 3. An L(Σ) model is a tuple M =
(DM ,WM , RM , IM ) where (i) the domain DM :=
Dagt∪̇Dobj is the disjoint union of the non-empty sets Dagt

andDobj (the agent domain and the object domain); (ii)WM

is a non-empty set of worlds; (iii) RM : Dagt → P(W ×W )
associates to each agent d ∈ Dagt an accessibility relation on
W , denoted RM

d , and (iv) IM is an interpretation satisfying:
IM (c, w) ∈ Dt(c) if c ∈ C and IM (r, w) ⊆

∏n
i=1Dti(r) for

r ∈ R with arity n. For w ∈ WM , the pair s = (M,w) is
called a state. A state s is called finite if WM is finite. If
RM

d is an equivalence relation for all d ∈ Dagt, then M is an
epistemic model, and s = (M,w) is then an epistemic state.

Truth conditions for formulas of L(Σ) are defined over
states, together with a variable assignment.

Definition 4. A variable assignment for a model M is a map
g : V → DM with g(x) ∈ Dt(x) for each x ∈ V. Denote by
g[x 7→ d] the assignment mapping x to d but else identical
to g. The extension of term t ∈ T at w in M , under g, is
JtKI

M ,g
w = g(t) if t ∈ V and JtKI

M ,g
w = IM (t, w) if t ∈ C. If

M is given by context, we omit it and write JtKI,gw .

Definition 5. Let M and g be given. Then
M,w �g r(t1, ..., tn) iff (Jt1K

I,g
w , ..., JtnKI,gw ) ∈ IM (r, w)

M,w �g ¬ϕ iff not M,w �g ϕ.
M,w �g ϕ ∧ ψ iff M,w �g ϕ and M,w �g ψ.
M,w �g ∀xϕ iff M,w �g[x 7→d] ϕ for all d ∈ Dt(x).
M,w �g Ktϕ iff M, v �g ϕ for all v s.t. (w, v) ∈ RM

JtKI,gw

.

2.3 Actions Schemas and Actions
The FODEL planning framework uses action schemas to pro-
vide compact, problem-independent domain descriptions in
the spirit of PDDL (see Figure 2). FODEL action schemas
use variables as action parameters, so a single schema may
be used, e.g., to represent all actions of the form ‘agent x
gives agent y object z’, where x, y and z are agent or object
variables, later instantiated into specific constants to define
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e1 : 〈owns(x, y); id〉 e2 : 〈>; id〉

¬sees(x?, x)

Figure 2: announce own(x, y), the schema for agent x an-
nouncing that it owns y. Each event is drawn with the format
〈pre(e), post(e)〉, where id is the identity map (i.e., no factual
change). The actual event e1 (marked with a double circle) describes
the announcement that x owns y. e2 describes the situation in which
nothing happens. Agents that do not see x will not learn what is
being announced. The edge-condition Q(e1, e2) = Q(e2, e1) =
¬sees(x?, x) defines this (Q(e1, e1) = Q(e2, e2) = > not drawn).

a (ground, epistemic) action. As in classical planning for-
malisms such as PDDL, a major reason for using schemas is
that they allow action representations whose size is indepen-
dent of the number of agents and objects in a domain.

FODEL action schemas include preconditions [Baltag et
al., 1998], postconditions [van Benthem et al., 2006; van Dit-
marsch et al., 2005] as well as edge-conditions in the style
of [Bolander, 2014]. Preconditions specify when an event is
executable. Postconditions describe the physical effects of
events. Edge-conditions describe how an agent observes the
action in terms of the agent’s circumstances.
Definition 6. An action schema is a form a(~x) =
(E,Q, pre, post) where (i) a is the action name and ~x ∈ Vn

is a finite parameter list; (ii) E is a non-empty, finite set of
events; (iii) Q : (E×E)→ L(Σ) is an edge-condition func-
tion, where the formula Q(e, e′) has a free variable x? of
type agt, and possibly other free variables all in ~x; (iv) pre :
E → L(Σ) assigns to each event a precondition formula with
all free variables in ~x; (v) post : E → (FreeAtoms(L) ⇀
L(Σ)) assigns to each event a partial postcondition function
such that if y1, . . . , ym ∈ ~x, then post(e)(r(y1, . . . , ym)) has
all free variables from ~x; else, post(e)(r(y1, . . . , ym)) is un-
defined. dom(post(e)) denotes the set of atoms for which
post(e)(r(t1, . . . , tk)) 6= r(t1, . . . , tk) and is required finite
for each e ∈ E, so postconditions are ensured finite objects.

Schema instantiation is defined as follows.
Definition 7. Let a(x1, . . . , xn) be an action schema and
σ : {x1, . . . , xn} → C be a grounding substitution mapping
action parameters to constants. For ϕ ∈ L(Σ), let ϕσ be the
result of replacing each free occurence of y ∈ V in ϕ by σ(y).

For an action schema a(~x) = (E,Q, pre, post), the
action model induced by the grounding substitution σ
is the tuple A = a(σ(~x)) = (EA, QA, preA, postA)
where (i) EA = E (ii) QA(e, e′) = Q(e, e′)σ; (iii)
preA(e) = pre(e)σ; (iv) postA(e)(r(t1, . . . , tn)σ) =
post(e)(r(t1, . . . , tn))σ if post(e)(r(t1, . . . , tn)) is defined;
and postA(e)(r(t1, . . . , tn)σ) = r(t1, . . . , tn)σ otherwise. A
pair a = (A, e) with e ∈ EA is called an epistemic action,
where e is the actual event taking place on execution.

2.4 Product Update
Execution is defined by the operation ⊗ that computes the
state s′ = s ⊗ a reached by applying action a in state s.
The operation is a first-order variant of product update from
[Baltag et al., 1998]. The new state s′ represents the agents
perception of s = (M,w) after the occurrence of the action

(w1, e1)

(w2, e2)

(w1, e2)

ann bob evakey

a1 a2 a3o1

seesowns

ann bob evakey

a1 a2 a3o1

sees

ann bob evakey

a1 a2 a3o1

seesowns

a3

a3

a3

Figure 3: The epistemic state s0 ⊗ announce own(ann, key). bob
now knows that ann owns the key. However, eva still does not know
this, as she did not see bob making the announcement.

described by a = (A, e). Figure 3 exemplifies the product up-
date of the state from Figure 1 and an instance of the schema
in Figure 2.
Definition 8. Let a = ((E,Q, pre, post), e) be an action and
s = ((D,W,R, I), w) a state. The product update of s and a
is the state s⊗ a = ((D,W ′, R′, I ′), (w, e)) where for any g
- W ′ = {(w, e) ∈W × E | (M,w) �g pre(e)}
- (w, e)R′d(w′, e′) iff wRdw

′ and M,w �g[x? 7→d] Q(e, e′)

- I ′(c, (w, e)) = I(c, w) for all c ∈ C and
I ′(r, (w, e)) = (I(r, w) ∪ r+(w)) \ r−(w), where

r+(w) := {(Jt1KI,gw , . . . , JtkKI,gw ) |
(M,w) �g post(e)(r(t1, . . . , tk))}

r−(w) := {(Jt1KI,gw , . . . , JtkKI,gw ) |
(M,w) 6�g post(e)(r(t1, . . . , tk))}

An action a = (A, e) is applicable in a state s = (M,w) iff
(M,w) �g pre(e). Else s⊗ a is undefined.

2.5 Planning Notions
As presented in [Ghallab et al., 2004], any classical plan-
ning domain can be described as a state-transition system
T = (S,A, γ) where S is a finite or recursively enumer-
able set of finite states, A is a finite set of actions and γ :
S ×A⇀ S is a partial, computable state-transition function.
A classical planning task is given by a triple (T, s0, SG),
where T is a state-transition system, s0 ∈ S is the initial
state and SG ⊆ S is the set of goal states. A solution to
a classical planning task (T, s0, SG) is a plan consisting of
a finite sequence of actions a1, a2, . . . , an such that (1) For
all i ≤ n, γ(γ(. . . γ(γ(s0, a1), a2), . . . , ai−1), ai) is defined,
and (2) γ(γ(. . . γ(γ(s0, a1), a2), . . . , an−1), an) ∈ SG.

Epistemic planning tasks can be defined as special cases of
classical planning tasks.
Definition 9. Let A be a finite set of L(Σ) action schemas.
An epistemic planning task based on A is a triple P =
(s0,A, ϕG) where the initial state s0 is a finite epistemic state
with a finite domain,A is the set of all ground instances of the
schemas in A, and the goal formula ϕG is a sentence of L(Σ).
Any epistemic planning task (s0,A, ϕG) induces a classical
planning task ((S,A, γ), s0, SG) given by:
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- S := {s0 ⊗ a1 ⊗ · · · ⊗ an | n ∈ N, ai ∈ A}
- SG := {s ∈ S | s � ϕG}
- γ(s, a) := s⊗ a if a is applicable in s, else undefined.

A solution to an epistemic planning task is a solution to the
induced classical planning task.

We follow Aucher and Bolander [2013] in defining the plan
existence problem:

Definition 10. Let n ∈ N. PlanEx(n) is the problem: “Given
an epistemic planning task P = (s0,A, ϕG) where s0 is an
n-agent L(Σ)-epistemic state, does P have a solution?”.

3 First-Order Bisimulations
To obtain a bisimulation notion for first-order, term-modal
models, we retain the “back” and “forth” conditions of propo-
sitional modal logical bisimulation, but replace the “atomic
harmony” condition with first-order logical isomorphism.
The resulting notion implies modal equivalence and is pre-
served under product updates. Further, n-bisimulation is de-
fined and shown to imply modal equivalence for formulas of
restricted modal depth, and states are shown to be bisimilar
to their bisimulation contractions. These results all extend to
FODEL standard properties of bisimulations in propositional
DEL and are key in proving the later decidability proofs, as
they allow us to show that the state spaces for some planning
fragments are finitely representable, up to bisimulation.1

3.1 Isomorphisms, Bisimulations and Equivalence
We first recall the notion of an isomorphism, viewed here as
a relationship between worlds in L(Σ) models.

Definition 11. Let M and N be L(Σ) models. An iso-
morphism between w ∈ WM and v ∈ WN is a bijection
f : DM → DN such that, for all c ∈ C and r ∈ R,

1. f(IM (c, w)) = IN (c, v)

2. (d1, ..., di) ∈ IM (r, w) iff (f(d1), ..., f(di)) ∈ IN (r, v)

If w and v are isomorphic based on f , we write w 'f v.

We then use isomorphisms to ensure that worlds linked by
a bisimulation agree on all L0(Σ) formulas, while also relat-
ing agents—and hence accessibility relations—appropriately
in the ‘forth’ and ‘back’ conditions:

Definition 12. For models M and N , let f : DM → DN be
a bijection. A non-empty relation Zf ⊆ WM ×WN is an
f -based bisimulation between M and N if

Atoms: If (w,w′) ∈ Zf , then w 'f w
′,

Forth: If (w,w′) ∈ Zf and RM
d wv, then there exists v′ such

that RN
f(d)w

′v′ and (v, v′) ∈ Zf , for all d ∈ Dagt,

1The existing work on bisimulations for first-order modal logic
models [van Benthem, 2010a; van Benthem, 2010b; Zoghifard and
Pourmahdian, 2018] concern varying domain models, with their
added complexity. See [Achen et al., 2020] for a planning related
discussion. The resulting potential isomorphism-based world-object
bisimulations are both more general and more complex than what is
needed for present purposes, while not tuned to term-modal logics.

Back: If (w,w′) ∈ Zf and RN
f(d)w

′v′, then there exists v
such that RM

d wv and (v, v′) ∈ Zf , for all d ∈ Dagt.

If (w,w′) ∈ Zf for any f -based bisimulation Zf be-
tween M and N , call (M,w) and (N,w′) bisimilar, written
(M,w)↔(N,w′).

Since any two bisimilar worlds w and w′ are required to
be isomorphic, the relation (M,w)↔(N,w′) can only hold
between models with domains of equal cardinality. Next, we
define n-bisimulations and bisimulation contractions.

Definition 13. For models M and N , let f : DM → DN be
a bijection. A non-empty relation Zn

f ⊆ WM ×WN is an
f -based n-bisimulation between states (M,w) and (N,w′) if
w 'f w′, and either n = 0 or, for some f -based (n − 1)-
bisimulation Zn−1

f

Forth: IfRM
d wv then there exists v′ such thatRN

f(d)w
′v′ and

vZn−1
f v′, for all d ∈ Dagt,

Back: If RN
f(d)w

′v′ then there exists v such that RM
d wv and

vZn−1
f v′, for all d ∈ Dagt.

If (w,w′) ∈ Zn
f for any f -based n-bisimulation Zn

f be-
tween (M,w) and (N,w′), call them n-bisimilar, written
(M,w)↔n(N,w′).

Definition 14. The bisimulation contraction of a L(Σ) model
M is M↔ = (DM ,W ′, R′, I ′) where

- W ′ = {[w]↔ | w ∈ WM} where [w]↔ = {v ∈ WM |
(M,w)↔(M,v)};

- ([w]↔, [v]↔) ∈ R′d iff there are w′ ∈ [w]↔ and v′ ∈ [v]↔
such that RM

d w
′v′;

- For all w ∈ W , c ∈ C and r ∈ R, I ′(c, [w]↔) = IM (c, w)

and I ′(r, [w]↔) = IM (r, w)

The n-bisimulation contraction M↔n
is defined in the same

way based on↔n.

Finally, we fix the relevant notions of logical equivalence:

Definition 15. Let M and N be models. Two worlds w ∈
WM and v ∈ WN are elementary equivalent, if for any sen-
tence ϕ ∈ L0(Σ) M,w �g ϕ iff N, v �g ϕ. If the same holds
for any sentence ϕ ∈ L(Σ), then they are modally equivalent.

3.2 Results on First-Order Bisimulations
With the notions defined, we turn to showing the results
needed for the later decidability proofs. First, we recall a
well-known result (see, e.g. [Rothmaler, 2018]).

Lemma 1. If w and v worlds in M and N respectively, then
w 'f v implies that w and v are elementary equivalent. If
M and N have finite domains, then the converse also holds.

From this, we show that bisimulation implies modal equiva-
lence, without restriction. For the converse, call a model M
image-finite models if for each world w ∈ WM and each re-
lation RM

d , the set {v ∈ WM | RM
d wv} is finite. We then

establish a variant of the Hennessy-Milner Theorem known
from propositional modal logic:
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Proposition 1. 1. If there is an f -based bisimulation between
(M,w) and (N,w′) then for all ϕ ∈ L(Σ): M,w �g ϕ iff
N,w′ �f◦g ϕ. 2. If M and N are image-finite and with finite
domains, the converse also holds.

Proof. 1. By induction on the complexity of ϕ. The base
case where ϕ is an atomic formula follows from Lemma 1.
Boolean cases are straightforward. We show the modal case
with ϕ = Ktψ. If t ∈ V, assume that M,w �g Ktψ and
RM

g(t)wv. As w↔w′, there is a v′ such that RN
f(g(t))w

′v′ and
v↔v′. By the induction hypothesis, we get N, v′ �f◦g ϕ.
As v was picked arbitrarily, M ′, w′ �f◦g Ktψ. If instead
t ∈ C, assume that M,w �g Ktψ and RM

I(t,w)wv. As w↔w′,
there is a v′ such that RN

f(IM (t,w))w
′v′ and v↔v′. By the in-

duction hypothesis, we get N, v′ �f◦g ϕ. Given w↔w′ we
get w 'f w′ and thus IN (t, w′) = f(IM (t, w)). Hence,
since v was arbitrary and IN (t, w′) = f(IM (t, w)), we get
N,w′ �f◦g Ktϕ. The other direction is similar.
2. The modal equivalence relation may be shown to be a
bisimulation. The proof is analogous to the propositional case
(see [Blackburn et al., 2001, Thm 2.24]), save for Atoms. But
this holds as modal equivalence of worlds joint with the finite
domain assumption by Lemma 1 implies isomorphism.

The modal depth of a formula ϕ, denoted md(ϕ), is the
depth of nesting of modal operators in ϕ. As in the proposi-
tional case, n-bisimilar states agree on all formulas of L(Σ)
whose modal depth is at most n.

Proposition 2. If there is an f -based n-bisimulation between
(M,w) and (N,w′), then for all ϕ ∈ L(Σ) withmd(ϕ) ≤ n:
M,w �g ϕ iff N,w′ �f◦g ϕ.

Proof. By induction on n. For n = 0, note that w 'f v.
Thus by Lemma 1, w and w′ are elementary equivalent, es-
tablishing the correspondence for sentences of modal depth
0. When free variables are assigned using g and f ◦ g, this
extends to all 0-depth formulas. The inductive step is stan-
dard (see, e.g. [Blackburn et al., 2001]), except for checking
that the interpretations of modal indices match appropriately
between models, which they do, given f .

As in the propositional case, any state is bisimilar to its
bisimulation contraction, a result used in the second decid-
ability proof below.

Proposition 3. For any (M,w), (M,w)↔(M↔, [w]↔) and
for any j such that j ≥ n ≥ 0, (M,w)↔n(M↔j

, [w]↔j
).

Proof. The proof for each case is analogous to its proposi-
tional counterpart, see e.g. [Blackburn and van Benthem,
2007] for the↔ case, and [Yu et al., 2013] for the↔n case.
Both are by induction on n, both with induction steps that
carry over to FODEL. The base cases follow by definition of
↔ and↔j .

Additionally towards proving decidability, we show that
the variant of product update preserves bisimilarity. This is
known for product update on propositional models, and here
it is extended to first-order, edge-conditioned updates.

Proposition 4. For any action (A, e), if (M,w)↔(M ′, w′),
then 1. (M,w) ⊗ (A, e) is defined iff (M ′, w′) ⊗ (A, e) is,
and 2. if defined, then (M,w)⊗ (A, e)↔(M ′, w′)⊗ (A, e).

Proof. 1. Follows by Proposition 1. 2. (M,w)↔(M ′, w′)

implies there is a bijection f : DM → DM ′
and an f -

based bisimulation Zf with wZfw
′. Define Z ′f ⊆WM⊗A ×

WM ′⊗A by (v, e1)Z ′f (v′, h1) iff vZfv
′ and e1 = h1. Then

Z ′f is an f -based bisimulation: Atoms: vZfv
′ requires that

v 'f v′. This implies that (v, e) 'f (v′, e) for any e, as
post will have identical effects on v and v′. Forth: As-
sume that (v, e1)Z ′f (v′, e1) and (v, e1)RM⊗A

d (u, e2). Then
vZfv

′, vRM
d u and M,v �g[x? 7→d] Q(e1, e2). As vZfv

′, also
M ′, v′ �g[x? 7→d] Q(e1, e2). As vRM

d u and vZfv
′, there is u′

s.t. v′RM ′

d u′ and uZfu
′. As (u, e2) ∈ WM⊗A and uZfu

′,
also (u′, e2) ∈ WM ′⊗A. Hence also (v′, e1)RM ′⊗A

d (u′, e2),
so (u, e2)Z ′f (u′, e2). The proof for Back is similar.

A corresponding result holds as well for n-bisimulations
and actions with non-modal preconditions:

Proposition 5. For any two n-bisimilar L(Σ) states (M,w)
and (M ′, w′) and any action (A, e) with pre(e′) ∈ L0(Σ) for
all e′ ∈ EA, 1. (M,w)⊗(A, e) is defined iff (M ′, w′)⊗(A, e)
is, and 2. if defined, (M,w)⊗ (A, e)↔n(M ′, w′)⊗ (A, e).

Proof. 1. Since (M,w)↔n(M ′, w′), w 'f w
′. As pre(e) ∈

L0(Σ), M,w �g pre(e) iff M ′, w′ �f◦g pre(e). 2. As-
sume that (A, e) is applicable in (M,w). We can prove
(M,w)↔n(M ′, w′) by induction on n. Base case: n = 0.
Since (M,w)↔0(M ′, w′), then w 'f w′. Thus, by the se-
mantics of product update, (w, e) 'f (w′, e). The inductive
step is analogous to [Yu et al., 2013, Proposition 4.14].

4 Decidability Results
4.1 Single-Agent Planning
We show first that single-agent FODEL planning is decidable.
The gist of the proof is that each single-agent epistemic state
is shown bisimilar to a ‘canonical state’, and that there are
finitely many such canonical states. Hence the state space
for single-agent planning is finitely representable, and it can
therefore be decided whether such task is solvable. We define
these canonical states as follows:

Definition 16. Given a signature Σ and a domain D with
Dagt = {d}, define the structure M(Σ,D) as the tuple
(D,W,W × W , I) where W is the set of first-order inter-
pretations i of Σ over D and I(x, i) = i(x) for all x ∈ C ∪ R
and all i ∈ W . TheM(Σ,D) substate of a single-agent L(Σ)
epistemic state (M,w) = (D,W,R, I, w) is the epistemic
state (M?, w?) = (D,W ?, R?, I?, w?) where

W ? = {i ∈ W | ∃u ∈W s.t. Rdwu and ∀x ∈ C ∪ R,
I(x, u) = I(x, i)},

R?
d = W ? ×W ?,

I?(x, i) = I(x, i), ∀x ∈ C ∪ R, ∀i ∈W ?,

w? = i? s.t. I(x, i?) = I(x,w), ∀x ∈ C ∪ R.
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Lemma 2. Any single-agent L(Σ) epistemic state (M,w) is
bisimilar to itsM(Σ,D) substate (M?, w?).

Proof. Define Zf ⊆ W ×W ? by vZfv
′ iff Rdwv and ∀x ∈

C ∪ R, I(x, v) = I?(x, v′), where f is the identity map. Then
Zf is a bisimulation and it links w to w?:
Atoms: If vZfv

′ then I(x, v) = I?(x, v′), ∀x ∈ C∪R, which,
since M and M? share domain D, entails v and v′ are ele-
mentary equivalent. As D is finite, by Lemma 1, v 'f v′.
Forth: Assume that vZfv

′ and Rdvu. By definition of M?,
there is a u′ ∈ W ? s.t. ∀x ∈ C ∪ R, I(x, u) = I?(x, u′).
By definition of Zf , we have Rdwv and so, by transitivity,
that Rdwu. Hence uZfu

′. Finally, as R?
d = W ? ×W ?, we

have R?
dv
′u′. Back: Assume that vZfv

′ and R?
dv
′u′. By

definition of M?, there is a u ∈ W such that Rdwu and
I(x, u) = I?(x, u′), ∀x ∈ C∪R. Hence, uZfu

′. As vZfv
′, by

definition, we have Rdwv. As also Rdwu, we have Rdvu, by
Euclideaness. Link: Finally, as I(x,w) = I?(x,w?), ∀x ∈
C ∪ R, and Rdww by reflexivity, it follows that wZfw

?.

Lemma 3. There are only finitely many non-bisimilar single-
agent L(Σ) epistemic states with underlying finite domainD.

Proof. By Lemma 2, any single-agent L(Σ) epistemic state
(M,w) with domain D is bisimilar to a M(Σ,D) substate.
Hence, up to bisimulation, the set of single-agent L(Σ) epis-
temic states is representable by a set of M(Σ,D) substates.
Since both Σ and D are finite, there are only finitely many
first-order interpretations of Σ over D—i.e., W is finite.
HenceM(Σ,D) has finitely many substates.

Theorem 1. PlanEx(1) (single-agent planning) is decidable.

Proof. Let P = (s0,A, ϕG) be a single-agent planning task.
By Proposition 1 and Lemma 2, any epistemic state and its
M(Σ,D) substate are bisimilar and hence agree on ϕG. By
Proposition 4, bisimilarity is preserved under product update.
Thus, to check if there is a plan, we do a breadth-first search
of the state space, replacing each visited epistemic state by its
M(Σ,D) substate. By Lemma 3, this state space is finite.

4.2 Multi-Agent Planning
Concerning multi-agent planning, the plan existence problem
is undecidable for unrestricted FODEL planning. This fol-
lows directly from the problem being undecidable for DEL
planning and FODEL containing DEL as a special case: any
DEL language can be simulated with a signature Σ consisting
only of 0-ary predicates. Aucher and Bolander [2013] show
that DEL planning is undecidable already for two agents.

Proposition 6. For k ≥ 2, PlanEx(k) is undecidable.

Reasonably expressive DEL fragments are decidable, such
as the fragment in which all actions have propositional pre-
conditions. We show that this result generalizes to FODEL.
Our result is inspired by [Yu et al., 2013], which shows decid-
ability for DEL. As in the single-agent case, the proof exploits
the fact that the state space in such case can be shown to be
finite (up to bisimulation). We fix some lemmas.

Lemma 4. There are finitely many non-bisimilar L(Σ) states
with finite domain D and exactly n worlds.

Proof. Let |W | = n. As Σ and D are finite, the set I of
interpretations definable forW , Σ andD is finite. AsDagt ⊆
D is finite, also the set R of definable accessibility relations
for Dagt and W is finite. Hence the set of states {(M,w) |
DM = D,WM = W,RM ∈ R, IM ∈ I, w ∈ W} is finite.
As the choice ofW is irrelevant for bisimilarity, there are thus
only finitely many non-bisimilar states with n worlds.

Yu et al. [2013] showed that the number of ↔n equiva-
lence classes of Kripke model has a fixed finite bound that
depends on n, generalizing a result from Visser [1996]. We
show a similar result for first-order models.
Lemma 5. Let M be an L(Σ) model with finite domain D.
Let |D| = m and |Dagt| = `. Denote by Fn(M) the number
of↔n equivalence classes of worlds of M . Let f(0) := m!
and f(i+ 1) := m!2f(i)+` for i ≥ 0. Then Fn(M) ≤ f(n).

Proof. By induction on k. LetM = (D,W,R, I). Base case:
k = 0. If w 'f v, then M,w↔0M, v. As there are m! bi-
jections from D into D, there are at most m! non-isomorphic
worlds in M and thus at most m! ↔0 equivalence classes.
Hence F0(M) ≤ f(0). Inductive step: Assume that the state-
ment holds for k. We prove it for k + 1. For any w ∈ W
and d ∈ Dagt, let Rd[w] := {[w′]↔k

| Rdww
′}. Then,

for any w1, w2 ∈ W , if w1 'f w2 and Rd[w1] = Rd[w2]
for all d ∈ Dagt, then (M,w1)↔k+1(M,w2). For any
d ∈ Dagt, there are at most 2Fk(M) distinct possibilities for
Rd[w]. Hence Fk+1(M) ≤ m!(2Fk(M))` ≤ m!(2f(k))` =
m!2f(k)+` = f(k + 1).

Theorem 2. If all actions have non-modal preconditions,
then PlanEx(k) is decidable, for k ≥ 1.

Proof. Let P = (s0,A, ϕG) be an epistemic planning task
with md(ϕG) = n. By Proposition 3, any epistemic state
and its n-bisimulation contraction are n-bisimilar and thus
agree on ϕG. By Proposition 5, product update preserves
n-bisimilarity. To check for a plan, we do a breath-first
search of the state space, replacing each visited state by its n-
bisimulation contraction. By Lemma 5, any n-bisimulation
contracted model has at most Fn(M) ∈ N worlds and by
Lemma 4, the number of non-bisimilar states with at most
Fn(M) worlds is finite.

5 Final Remarks
FODEL combines the higher-order expressiveness of DEL
with the first-order abstraction of languages such as PDDL
to compactly describle epistemic planning domains. We
have introduced bisimulations for FODEL models and ex-
ploited them to show decidability for single-agent planning
and multi-agent planning with non-modal preconditions. Fu-
ture work could study other decidable fragments, the com-
plexity of FODEL planning, or FODEL planning algorithms.
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